Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 63(18): e202400837, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38446007

ABSTRACT

Magnesium batteries attract interest as alternative energy-storage devices because of elemental abundance and potential for high energy density. Development is limited by the absence of suitable cathodes, associated with poor diffusion kinetics resulting from strong interactions between Mg2+ and the host structure. V2PS10 is reported as a positive electrode material for rechargeable magnesium batteries. Cyclable capacity of 100 mAh g-1 is achieved with fast Mg2+ diffusion of 7.2 × ${\times }$ 10-11-4 × ${\times }$ 10-14 cm2 s-1. The fast insertion mechanism results from combined cationic redox on the V site and anionic redox on the (S2)2- site; enabled by reversible cleavage of S-S bonds, identified by X-ray photoelectron and X-ray absorption spectroscopy. Detailed structural characterisation with maximum entropy method analysis, supported by density functional theory and projected density of states analysis, reveals that the sulphur species involved in anion redox are not connected to the transition metal centres, spatially separating the two redox processes. This facilitates fast and reversible Mg insertion in which the nature of the redox process depends on the cation insertion site, creating a synergy between the occupancy of specific Mg sites and the location of the electrons transferred.

2.
Science ; 383(6684): 739-745, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38359130

ABSTRACT

Fast cation transport in solids underpins energy storage. Materials design has focused on structures that can define transport pathways with minimal cation coordination change, restricting attention to a small part of chemical space. Motivated by the greater structural diversity of binary intermetallics than that of the metallic elements, we used two anions to build a pathway for three-dimensional superionic lithium ion conductivity that exploits multiple cation coordination environments. Li7Si2S7I is a pure lithium ion conductor created by an ordering of sulphide and iodide that combines elements of hexagonal and cubic close-packing analogously to the structure of NiZr. The resulting diverse network of lithium positions with distinct geometries and anion coordination chemistries affords low barriers to transport, opening a large structural space for high cation conductivity.

3.
Chem Commun (Camb) ; 59(51): 7982-7985, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37283527

ABSTRACT

The distribution of degradation products, before and after cycling, within common sulfide-based solid electrolytes (ß-Li3PS4, Li6PS5Cl and Li10GeP2S12) was mapped using Raman microscopy. All composite electrodes displayed the appearance of side reaction products after the initial charge-discharge cycle, located at the site of a LiNi0.6Mn0.2Co0.2O2 particle.


Subject(s)
Body Fluids , Electrodes , Lithium , Microscopy , Sulfides
4.
Front Chem ; 11: 1098460, 2023.
Article in English | MEDLINE | ID: mdl-36711236

ABSTRACT

Cation-disordered rock-salt cathodes (DRX) are promising materials that could deliver high capacities (>250 mAh g-1) with Earth abundant elements and materials. However, their electrochemical performances, other than the capacity, should be improved to be competitive cathodes, and many strategies have been introduced to enhance DRXs. Fluorination has been shown to inhibit oxygen loss and increase power density. Nevertheless, fluorinated cation-disordered rock-salts still suffer from rapid material deterioration and low scalability which limit their practical applications. This mini-review highlights the key challenges for the commercialization of fluorinated cation-disordered rock-salts, discusses the underlying reasons behind material failure and proposes future development directions.

5.
Article in English | MEDLINE | ID: mdl-35830246

ABSTRACT

Various Fe-based layered oxide materials have received attention as promising cathode materials for sodium ion batteries because of their low cost and high specific capacity. Only a few P3-type Fe-based oxide materials, however, have been examined as cathodes because the synthesis of highly crystalline P3-type Fe-based oxides is not facile. For this reason, the structural merits of the P3 structure are not yet fully understood. Herein, highly crystalline P3-type Na0.67[Li0.1(Fe0.5Mn0.5)0.9]O2 heated at 900 °C is introduced to improve the electrochemical performance of Fe-based layered oxides. The structures, reaction mechanisms, and electrochemical performances of P3 Na0.67[Li0.1(Fe0.5Mn0.5)0.9]O2, P2 Na0.57[Li0.1(Fe0.5Mn0.5)0.9]O2, and P2 Na0.67[Fe0.5Mn0.5]O2 are compared to demonstrate the roles of Li+ doping in the improved electrochemical performance of P3 Na0.67[Li0.1(Fe0.5Mn0.5)0.9]O2, such as stable capacity retention over 100 cycles. P3 Na0.67[Li0.1(Fe0.5Mn0.5)0.9]O2 significantly suppresses the migration of Fe3+ ions to tetrahedral sites in the Na layer during cycling because the cation disorder of Li+ is more favorable than that of Fe3+. As a result, P3 Na0.67[Li0.1(Fe0.5Mn0.5)0.9]O2 shows better cycle performance than P2 Na0.67[Fe0.5Mn0.5]O2. P3 Na0.67[Li0.1(Fe0.5Mn0.5)0.9]O2 also exhibits an improved rate performance compared to P2 Na0.67[Fe0.5Mn0.5]O2. This finding provides fundamental insights to improve the electrochemical performance of layered oxide cathode materials for sodium ion batteries.

6.
Adv Sci (Weinh) ; 8(6): 2003714, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33747744

ABSTRACT

Mild-acid Zn-MnO2 batteries have been considered a promising alternative to Li-ion batteries for large scale energy storage systems because of their high safety. There have been remarkable improvements in the electrochemical performance of Zn-MnO2 batteries, although the reaction mechanism of the MnO2 cathode is not fully understood and still remains controversial. Herein, the reversible dissolution/deposition (Mn2+/Mn4+) mechanism of the MnO2 cathode through a 2e- reaction is directly evidenced using solution-based analyses, including electron spin resonance spectroscopy and the designed electrochemical experiments. Solid MnO2 (Mn4+) is reduced into Mn2+ (aq) dissolved in the electrolyte during discharge. Mn2+ ions are then deposited on the cathode surface in the form of the mixture of the poorly crystalline Zn-containing MnO2 compounds through two-step reactions during charge. Moreover, the failure mechanism of mild-acid Zn-MnO2 batteries is elucidated in terms of the loss of electrochemically active Mn2+. In this regard, a porous carbon interlayer is introduced to entrap the dissolved Mn2+ ions. The carbon interlayer suppresses the loss of Mn2+ during cycling, resulting in the excellent electrochemical performance of pouch-type Zn-MnO2 cells, such as negligible capacity fading over 100 cycles. These findings provide fundamental insights into strategies to improve the electrochemical performance of aqueous Zn-MnO2 batteries.

SELECTION OF CITATIONS
SEARCH DETAIL
...